Bryan Dow Managing Director, Investment Banking bdow@stifel.com

STIFEL | Global Technology Group

DIGITAL MANUFACTURING MARKET MONITOR
March 2020

Dear Friends,

As I write this, like many of you, I am hunkered down at home trying to juggle my professional responsibilities as an investment banker and personal life of being a Dad to three young kids and an extremely patient wife. While this pandemic is full of so many negative consequences, as an eternal optimist, I am trying to focus on the positive. While my clients are keeping me plenty busy I was afforded the time to FINALLY complete this digital manufacturing market monitor. I have been an investment banker for 16+ years and covering this sector for 7+ years and many of you have seen my previous digital manufacturing and 3D printing monitors. I get a weekly email from someone asking if I have the latest and greatest. Since the inaugural market monitor, the sector has evolved and so has our materials to the point where a complete restart was needed. Well, I'd thank everyone for their continued interest and patience because here it is!

On the digital manufacturing front, there have been some ebbs and flows in terms of M&A and capital raising activity over the past five years culminating in a record level in 2019. This has been driven by a variety of factors, including continuing maturity in the sector, advent of new technologies, robust economic environment and increasing sophistication and appetite from the strategic and financial community.

Historically, M&A activity in the space has been spread across the value chain from materials, machines and digital manufacturers while investment activity was primarily in machine companies where all of the "unicorns" live (Carbon, Desktop Metal and Formlabs). In 2019, there was a robust venture capital market for digital manufacturers raising nearly \$150M across four companies (3DHubs, Fast Radius, Fictiv and Xometry), by far the most venture interest in this business model. That said, machine companies continue to dominate the venture capital inflow. M&A activity in 2019 remained strong across the board with digital manufacturers leading the charge. At Stifel we were sole advisor on three of these deals (FATHOM, FORECAST 3D and ICOMold) as private equity (Riverside, CORE) continues to show interest in the business models and EBITDA profiles along with a push from "out-of-segment" strategic companies buying into the sector (Proto Labs, GKN).

Before the COVID-19 pandemic, we continued to experience strong momentum in the sector to begin 2020 but we expect to see a pause for a few quarters as the market evaluates the impact. We expect this to hit machine companies hardest as voluntary capex is effectively put on hold. That said, some sector deals will get done opportunistically where supply chain disruption in Asia shifts more business to domestic manufacturers.

Hope you enjoy our monitor, and it provides a nice escape from your bunker.

Sincerely,

Bryan Dow Managing Director, Investment Banking bdow@stifel.com

#1 Firm in Technology Mid-Market Investment Banking

One of the most active technology-focused advisory groups in the world – differentiated by deep sector knowledge, global footprint and a collaborative business model

STIFEL | Global Technology Group

#1 in M&A ⁽¹⁾	Full Service Offering	#1 in Equity⁽²⁾
Mid-Market (<\$1.0B)	M&A Public and Private Equity Capital Markets SPAC	Mid-Market (<\$1.0B)
Technology Advisory	Leveraged Finance Restructuring Fund Advisory	Technology Advisory
Team of 100+	Four Industry Practice Groups	Unrivaled
15+ Nationalities	Electronics & Industrial Technology I Software I	Experience from 2,000+ Deals
10+ Languages Spoken	Tech Enabled Services I Internet & Digital Media	Closed in Combined Careers
44 Senior Bankers	Global Reach	Collaborative
Operating from	Serving North American, European and Asian	One Integrated Group,
the US and Europe	markets from offices across the US and Europe	One Global P&L

<\$1B deal values from 2010 - 2019 1H - Source: 451
 All Managed Equity (\$1B market cap from 2010 - Feb 2020 - Source: Dealogic

#1 Firm in Advanced Manufacturing

*Worked on transaction while at a previous, unaffiliated firm.

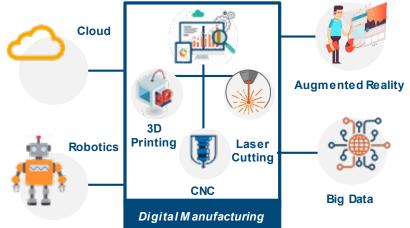
STIFEL

#1 Firm in Digital Manufacturing

FORECAST 3EVENCEHas Been Acquired byEVENCEMavisor to CallerJanuary 2020SD Printing, CNC, Casting	<image/> <section-header><text><image/><text></text></text></section-header>	<image/> <text><image/><image/><text></text></text>	Image: Advisor to Xcentric January 2017Advisor to Xcentric January 2017	Has Been Acquired by Distribution of the selection of th
 Provider of 3D printing services and short-run manufacturing across a variety of industries Largest capacity of HP MJF technology Proprietary software Acquired by leading advanced materials, metallurgy and parts manufacturer 	 Provider of innovative plastic injection molding Proprietary software for automated front- end quoting and project management Acquired by leading digital manufacturing platform company owned by a key financing sponsor in the sector 	 Manufacturer of advanced technology-driven prototypes and production parts Proprietary software for automated front- end quoting Acquired by leading digital manufacturing platform company owned by a key financing sponsor in the sector 	 Provider of quick- turn, digital manufacturing Proprietary software to automate short- run production injection molded parts Acquired by leading financial sponsor creating a strong platform in the sector 	 Provider of high-quality 3D printing services to corporate customers in a variety of industries Proprietary quotation software First acquisition for the leading public company in digital manufacturing to enter 3D printing market

STIFEL

Digital Manufacturing – Digital Disruption in Manufacturing



Digital Disruption in Manufacturing

Digital manufacturing helps increase productivity and process intelligence faster

Digitization in Manufacturing

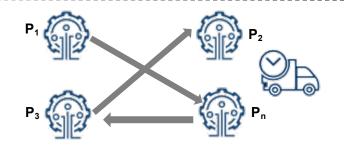
The Ecosystem of fourth Revolution

Digital manufacturing belongs to a much larger trend known as the Industrial Revolution 4.0, which combines CAD¹, robotics, sensors, and data & analytics to redefine industrial production

- This digitalization of manufacturing is changing how products are designed, fabricated, operated, and serviced, just as it's transforming the operations, processes, and energy footprint of factories, as well as the management of manufacturing supply chains
- The amalgamation of production techniques with the latest technological developments is making manufacturing autonomous, cheaper, and more efficient
- Technological advancements in industrial robotics, IoT, cloud computing, machine learning, and data analytics are greatly assisting operators to heighten consistency and streamline operations
- Overall, this digital environment has led operators in the manufacturing sector to rely less on human input at each stage of production and more on advanced digital tools & processes

Conventional Manufacturing

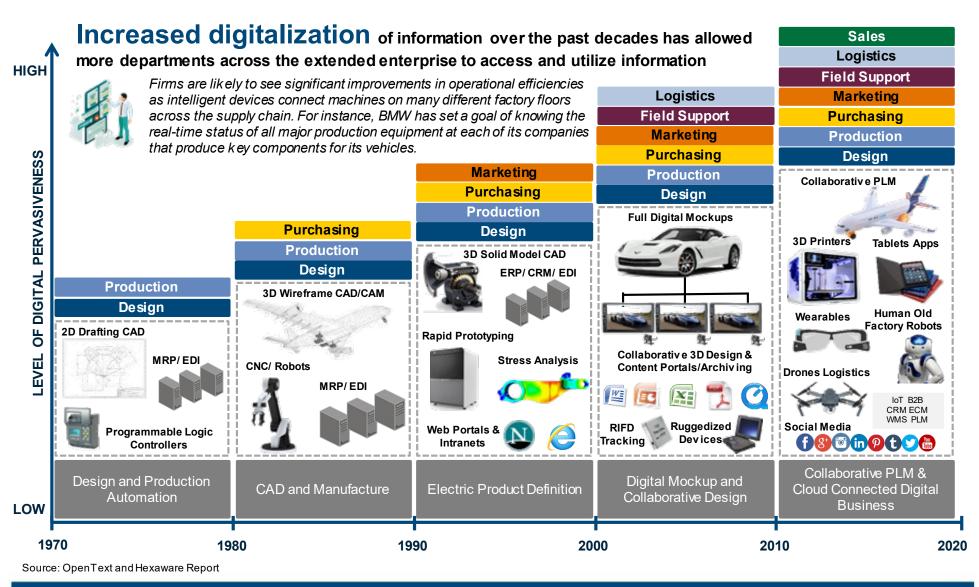
- Mass production
- Sequential value chain Long turnaround time
- Large quantities Small margins


Digital Manufacturing

- Custom production
- Small guantities, short run •
- Low flexibility

- Changing collaborative partnerships
- High margins
- Short turnaround time
- Highly flexible and adaptive

Source: Hexaware, Industry Reports, GPS Consulting, and Press Articles; 1) Computer Aided Design

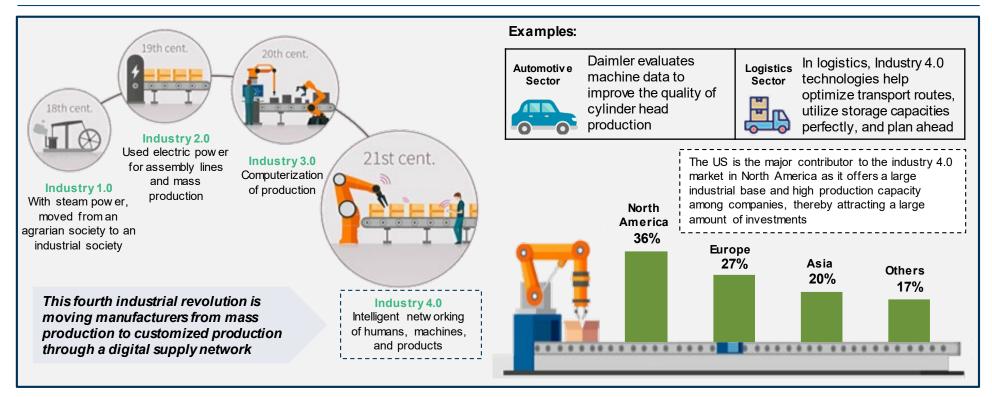


P₁, P₂, P_n indicate different processes

Digital Disruption in Manufacturing – Evolution

Digital manufacturing is revolutionizing with advancements in areas such as AI

Evolution of Digital Manufacturing Business



STIFEL

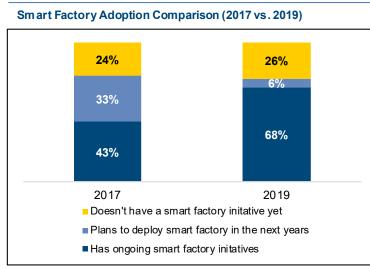
Smart Manufacturing – The Industry 4.0 Revolution

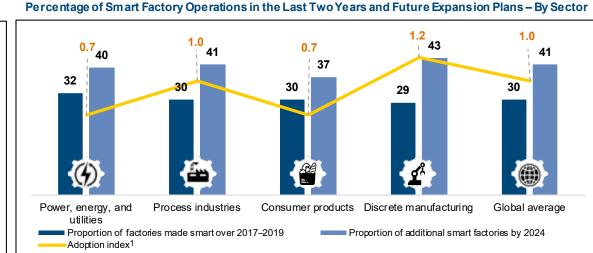
Smart and connected systems are changing the way production works

Road to the Connected Intelligent Value Creation Chain

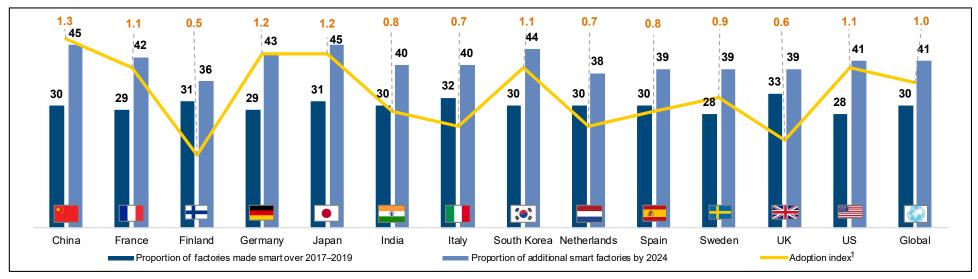
An estimated **70%** new value created in the economy globally over the next decade will be based on digitally enabled platforms

As per a 2019 BCG survey, over 80% of the manufacturing companies that are investing in digital operations witnessed 10–20% reduction in supply chain cost and a 6% uptick in incremental revenue


By 2023, digital transformation spending will grow to more than 50% of all ICT investments from 36% in 2019 – the highest growth in data intelligence and analytics


Source: World Economic Forum, IDC Report, BCG Report, Cision PRNewswire, and Press Articles

Smart Factories – Digital Industrial Revolution


On average, 30% organizations across major countries are now smart

Percentage Share of Smart Factories Across Various Sectors and Countries

Percentage of Smart Factory Operations in the Last Two Years and Future Expansion Plans – By Country

Source: Capgemini Report 2019; 1) Shows the future expansion plans - An index greater than one means that the country has a more aggressive expansion plan than the average

STIFEL

Smart Factories – Massive Market Opportunity

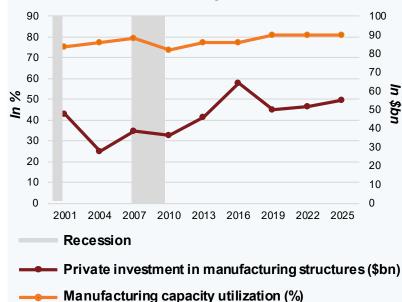
By 2023, smart factories will have the potential to add \$1.5–2.2tn annually

Percentage Share of Smart Factories Across Geography and Various Industries

	Conservative Scenario	Average Scenario	Aggressive Scenario
A Share of factories that became smart over 2017–2018	29.6%	29.8%	31.6%
B. Expected increase in productivity gains by 2023, as compared with productivity gains achieved	15.9%	20.0%	21.7%
C. Share of additional smart factories by 2023	37.3%	41.2%	42.7%
D. Productivity gain target by 2023 at the factory level due to smart factory initiatives	27.8%	33.7%	36.5%
E. Overall productivity gain due to smart factory initiatives by 2023 (A*B) + (C*D)	15.0%	19.8%	22.5%
F. Average annual productivity gain due to smart factory initiatives until 2023 (CAGR computation from E)	2.8%	3.7%	4.1%
G. Approx. manufacturing industry value added in the surveyed geographies in 2019	\$9.8tn		
 H. Expected additional value added by the manufacturing industry due to productivity gain in smart factories by 2023 (G*E) 	Total Value Added: \$1.5tn	Total Value Added: \$1.9tn	Total Value Added: \$2.2tn

Source: Capgemini Report 2019

Market Dynamics – Digital Manufacturing Driving Efficiency

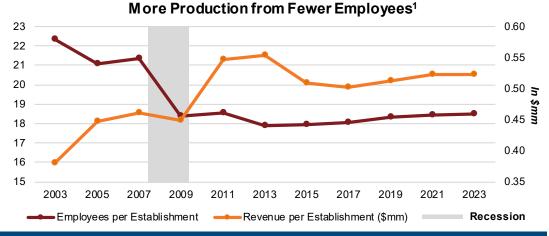

Technological advancements in manufacturing are making workers more efficient

Drivers

Smart factories and automated production

With an increase in the adoption of Internet of Things (IoT), manufacturers can seamlessly integrate previously discrete segments of production, leading to the proliferation of smart factories, in which interconnected automated production processes enable unprecedented levels of optimization and efficiency

• By incorporating network connectivity to gather data from their environment, smart factories can generate context that ultimately produces a more autonomous, adaptive, and flexible response to any changes that occur



Manufacturing Indicators¹

Increased demand for high productivity

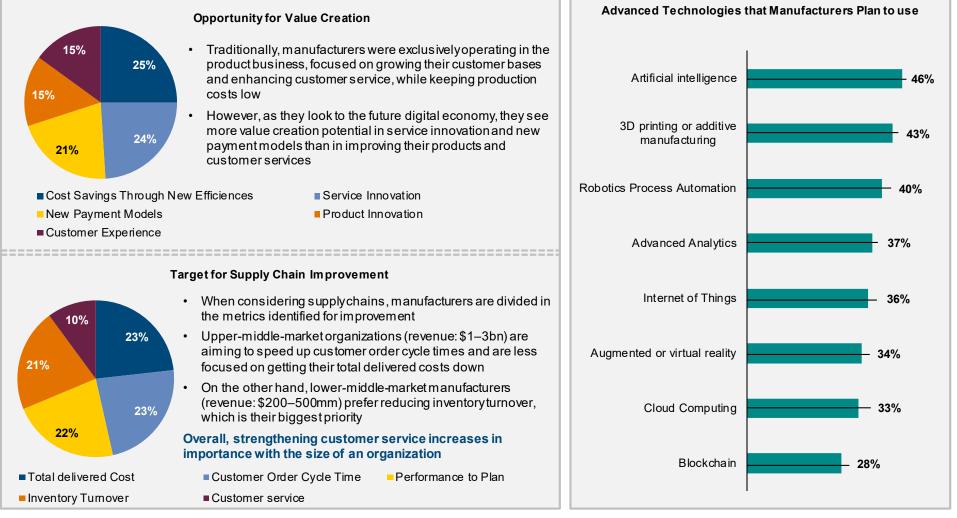
The simultaneous increase in manufacturing output and decline in manufacturing jobs over long term show that American manufacturers have become far more productive than they were two decades ago

Manufacturers are now able to produce more goods or higher-value goods, with less labor, represented by a long-term uptick in revenue per employee, which has been accomplished through focused investment in R&D, supporting both product and process innovation

Computer-aided design and computer-aided manufacturing

Manufacturers are increasingly implementing computer-aided design (CAD) and computer-aided manufacturing (CAM) software to assist with the design and manufacture of prototypes and finished products

- The conceptual overlap between design and production enables manufacturers to use CAD/CAM systems in tandem, enabling operators to develop an initial concept in days rather than months and drastically reduce the manufacturing life cycle
- By integrating technical drawings with 3D visuals, CAD/CAM interfaces have provided manufacturers with powerful tools for product design and delivery

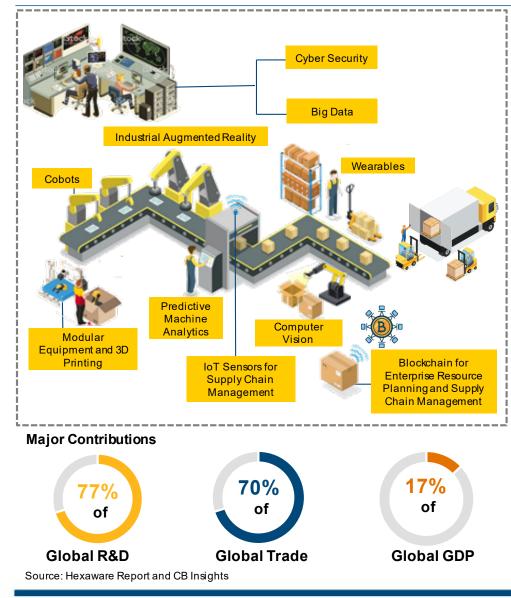


Market Dynamics – Benefits of Digital Manufacturing

Technology is helping broaden manufacturers' horizons by capturing more value

Benefits of Digital Manufacturing

Manufacturing is undergoing a revolution as advanced connectivity and big data unleash a new wave of innovation. The upheaval is not confined to the factory floor; business models are also in flux as manufacturers get new insights into how their products are used and can then repackage products into services



Source: BDO Report 2019

Digital Disruption – Future of Manufacturing

Technology is making an impact on every step of the manufacturing process

The Future of Manufacturing

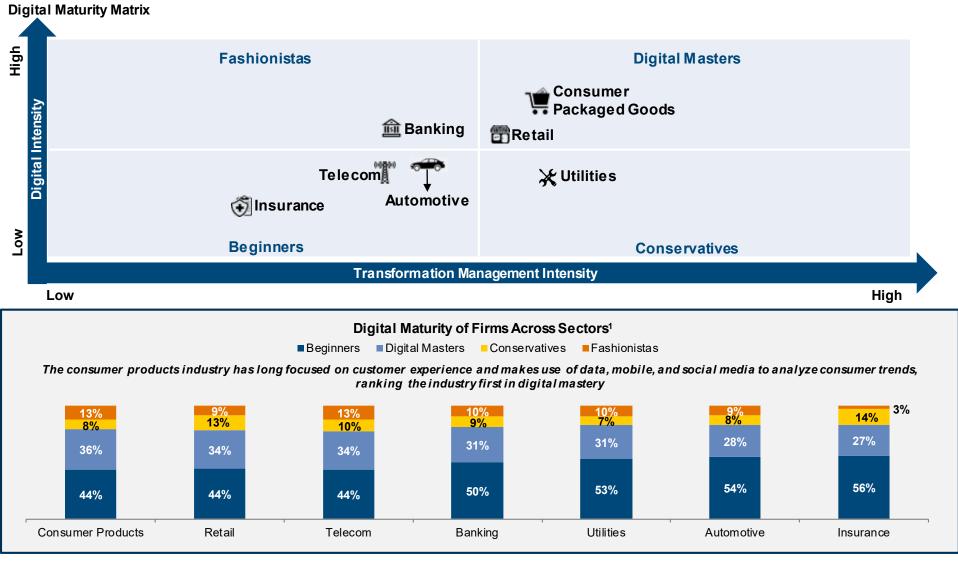
Different steps of the manufacturing process: How these steps are changing

- **Product R&D:** This helps the product development team to enable sensors, actuators, and digital identification tags within production lines, and communicate in real-time with on-floor employees to achieve a high level of quality control
- **Resource Planning & Sourcing:** On-demand decentralized manufacturing and blockchain projects are working on the complexities of integrating suppliers
- **Operations Technology Monitoring & Machine Data:** Operations teams can access real-time information on the process, inventory, and order status by automating and integrating business processes
- Labor Augmentation & Management: AR and wearables are augmenting human capabilities on the factory floor
- **Machining Production &Assembly:** Modular equipment and custom machines, such as 3D printers, are enabling manufacturers to handle greater demand for variety
- Quality Assurance (QA): Gives a brief about how computer vision will find imperfections, and how software and blockchain tech will more quickly be able to identify problems
- **Warehousing:** With the help of robotics and vision tracking, new warehouse demand could bring "lights-out" warehouses even faster than an unmanned factory
- Transport & Supply Chain Management: Telematics, IoT, and autonomous vehicles will bring greater efficiency and granularity for manufacturers delivering their products

Digital Disruption – Adoption of Connectivity Technologies

Use of connectivity technologies and data analytics is set to significantly increase

Manufacturer's adoption of connectivity technologies and analytics


Technology/Analytics	As of 2017	Change over the next five years	By 2022
Predictive maintenance	28%	+38%	66%
Big data-driven process and quality optimization	30%	+35%	65%
Process visualization/ automation	28%	+34%	62%
Connected factory	29%	+31%	60%
Integrated planning	32%	+29%	61%
Data-enabled resource optimization	52%	+25%	77%
Digital twin of the factory	19%	+25%	44%
Digital twin of the production asset	18%	+21%	39%
Digital twin of the product	23%	+20%	43%
Autonomous intra-plant logistics	17%	+18%	35%
Flexible production methods	18%	+16%	34%
Transfer of production parameters	16%	+16%	32%
Modular production assets	29%	+7%	36%
Fully autonomous digital factory	5%	+6%	11%

Source: PwC Report 2017

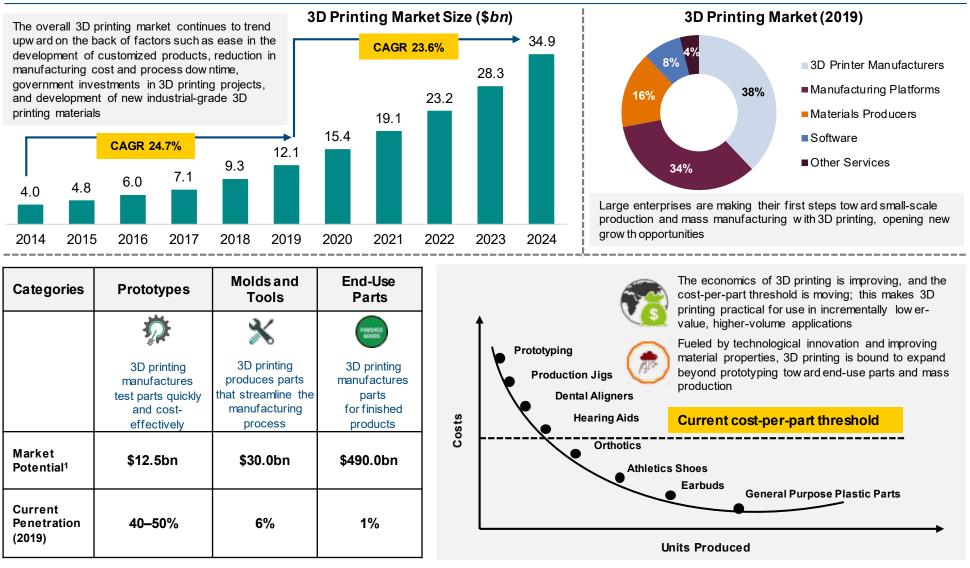
Digital Maturity

Industries are in the midst of the first phase of their digital transformation journey

Introduction to Digital Maturity

Source: Capgemini Report 2018 and Press Articles; 1) Percentages represent proportion of categories based on digital maturity across industries

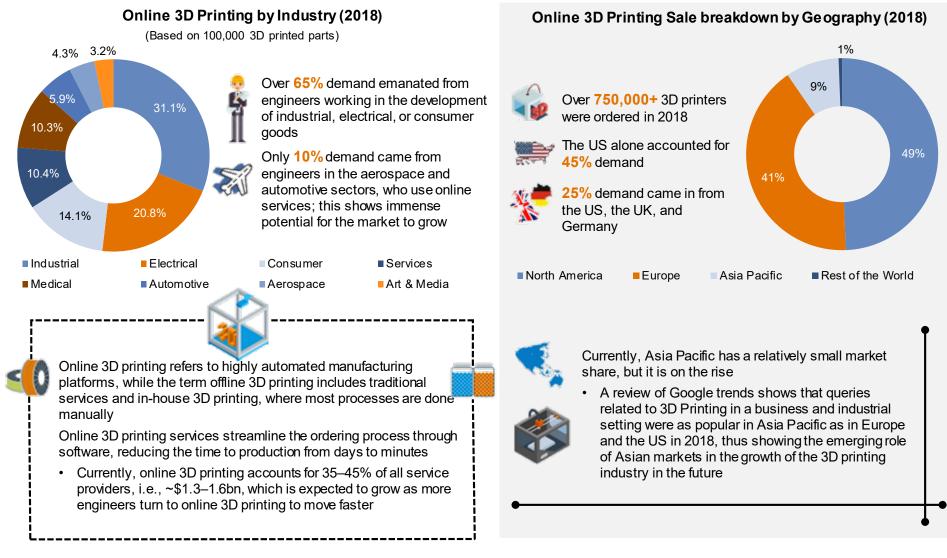
STIFEL


Digital Manufacturing – 3D Printing

3D Printing Market Overview

As of 2019, 3D printing market has been witnessing 25% YoY growth since 2014

Global Market Highlights

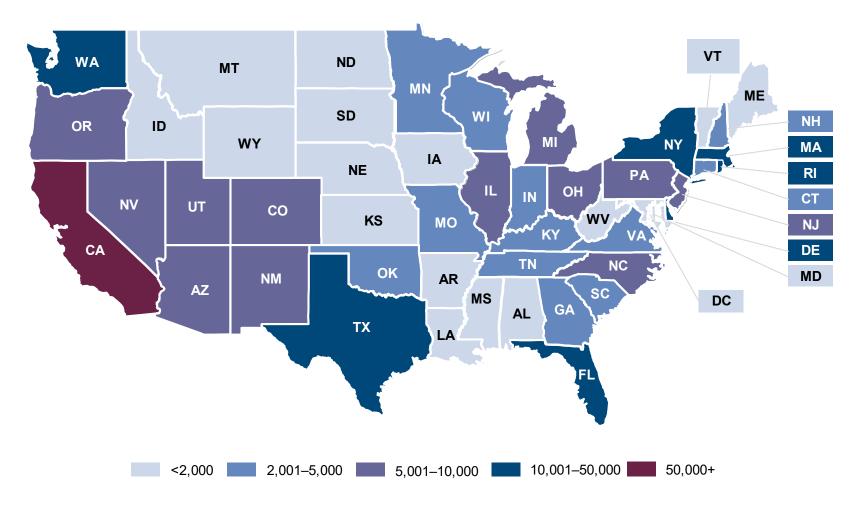

Source: 3DHubs and EY Report; 1) ARK Investment Management Estimate

STIFEL

SMEs Driving 3D Printing

SMEs are the major drivers of the online 3D printing market

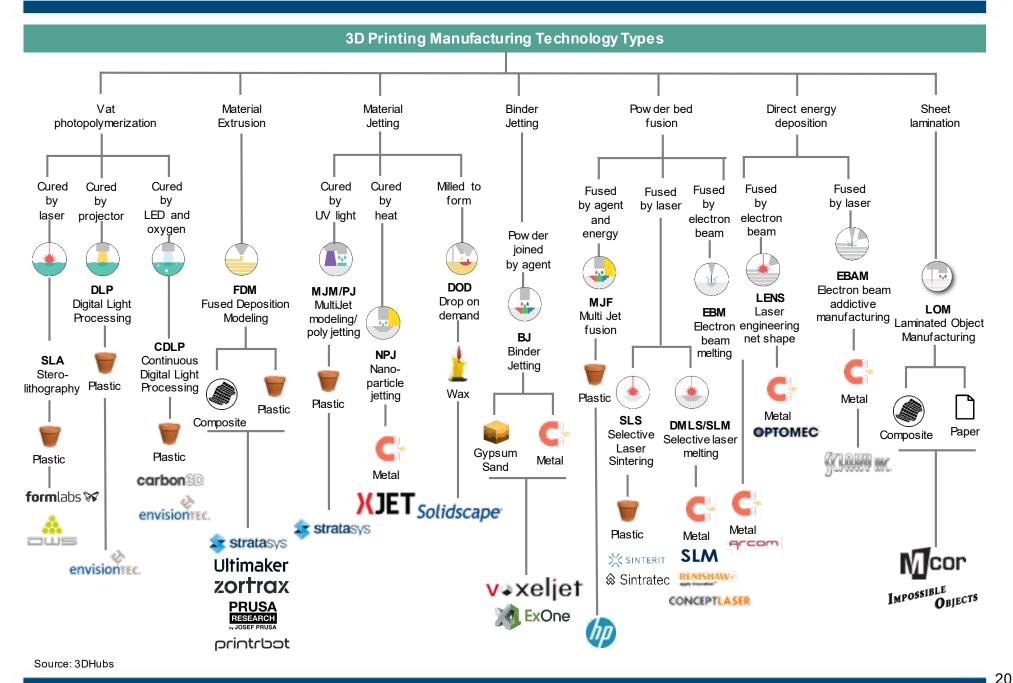
Global Market Highlights


Source: Industry Report

3D Printing Online Platforms Growing Rapidly

In 2019, ~260,000 parts were 3D printed by an online platform¹ in the US

US Online 3D Printing Demand By State


California witnessed the highest online 3D printing demand in 2019 with more than 22% of the total US demand from customers based there, owing to strong presence of tech start-ups

Source: 3DHubs; 1) 3DHubs online manufacturing platform

3D Printing Technologies Continue to Expand

Market Trends in 3D Printing

Advancements in software & hardware have led to the hybridization of technologies

Market Trends

Rise of Additive Process Control Software

Most application-specific AM¹ technologies require a comprehensive build setup such as virtual machines and in situ monitoring to ensure the part completes the printing process and can undergo post processing

 Velo3D has reinvented the metal laser sintering platform by incorporating a software that predicts and mitigates overhangs, its AM solution can make metal parts with much less support, flipping traditional DMLS paradigms upside down

Novel Materials and Processes

Innovation in 3D printing is being moved forward by new material families such as *reaction polymers*. ceramics, and 3D printing circuit boards that further bridge gaps between prototype and end-use production without traditional manufacturing methods

• DLyte's dry electropolishing uses alternating charges between anodes and cathodes in an electrolytic media base to homogeneously even out the material surface while retaining feature details. By reducing acute stress junction on the part surface, 3D prints can achieve smooth surfaces to meet both cosmetic and strength requirements

Source: Press Articles; 1) Additive Manufacturing

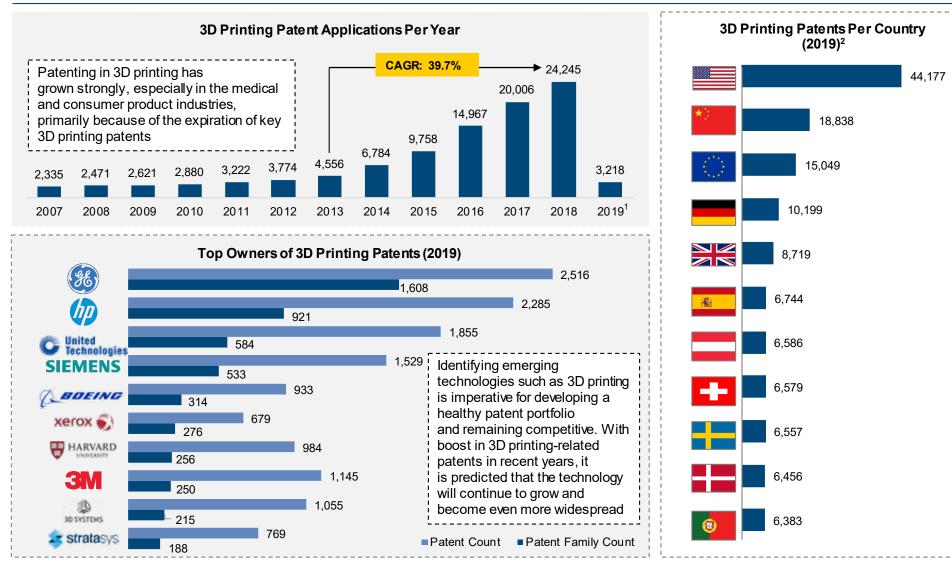
Increased Isotropic Print Possibilities

Innovations in 3D printing technologies such as continuous 3D printing, novel fusion on filament-based systems, and 3D contouring have opened the possibility of isotropic parts (uniformity in all orientations) to bring greater structural strength to parts

• **RIZE** has 3D printers that deposit specially formulated agents between layers, which can either enhance the layer bond or promote release for features such as a support structure, exhibiting isotropic properties

Viable Hybrid 3D Printing Technologies

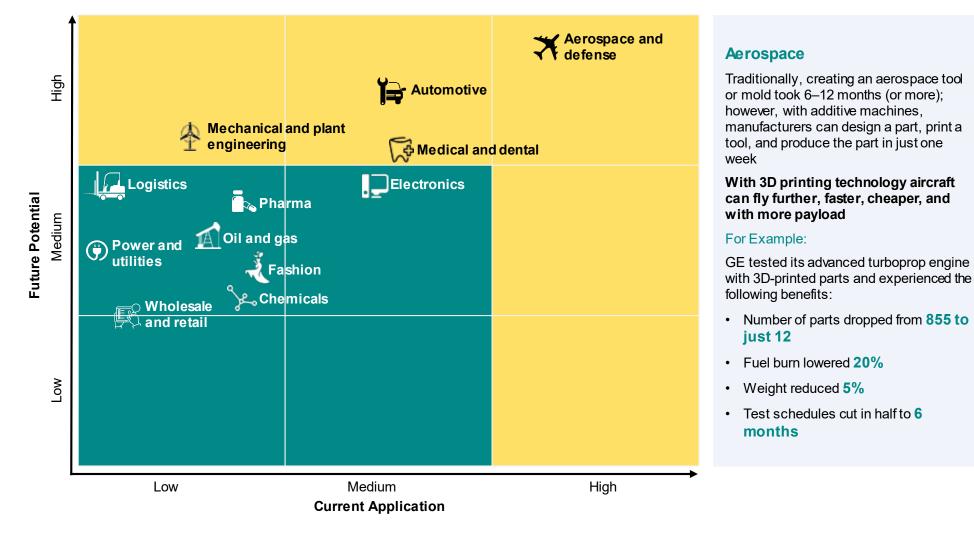
CNC machining, urethane casting, injection *molding*, and other established production technologies can be combined with AM to enhance surface smoothness, low tolerances, and material types in industrial applications


 Mazak's INTEGREX series has an AM head that can deposit metal in a fashion such as directed energy deposition (DED), the material deposited hits a near-net shape of the final feature and is completed with **CNC tooling**

3D Printing Patents Expanding

Patents for 3D printing products posted a 39.7% CAGR over 2013–2018

3D Printing Patents Highlights



Source: Iplytics Report; 1) As of Feb 2019, 2) By number of 3D patent applications filed

Large Market Opportunity for 3D Printing

With 1% share in the addressable market¹, 3D printing has growth potential

3D Revolution by Industry

Industry Applications

3D printing is used across multiple industries and offers several cost benefits

Selected Applications of 3D Printing Demand

Industry	Current Applications	Potential Future Applications	Cost Advantages
Automotive	 Rapid prototyping and manufacturing of end-use auto parts Parts and assemblies for antique cars and race cars Quick production of parts 	 Sophisticated auto components Auto components designed for crowd sourcing 	 Opel, a car manufacturer, admitted a tooling cost reduction of 90% in the assembly process
Commercial Aerospace and Defense	 Concept modeling and prototyping Structural and nonstructural production parts Low-volume replacement parts 	 Aircraft wing and structural components Complex engine parts Embedding additively manufactured electronics directly on parts 	 Boeing estimates that 3D printing can save \$2–3mm per plane
Consumer Goods	Rapid prototypingCustomized jewelry and watches	 Co-designing and creating with customers Customized living spaces 	 Stratasys estimates that 3D printers can lead to an average cost savings of 70–95%
Healthcare and Medicine	 Prostheses and implants Medical instruments and models Hearing aids and dental implants 	 Developing organs and transplants Large-scale pharmaceutical production Developing human tissues for regenerative therapies 	 According to Forbes research, 3D printing results in cost savings of up to 70% for its medical clients
Space	 Specialized parts for space exploration Structures that require lightweight, high-strength materials 	 On-demand parts/spares for use in space Large structures directly created in space 	 As per Lockheed Martin, 3D printing aids decline in manufacturing cost of rockets, satellites, and antennas

Source: Industry Report, Forbes, and Press Articles

Recent Developments – Transitioning to Production

A rising no. of firms are adopting 3D printing technologies for serial production

Recent Developments (2019) – By Industry Types

Lima Corporate opens an implant 3D printing facility at a hospital in New York

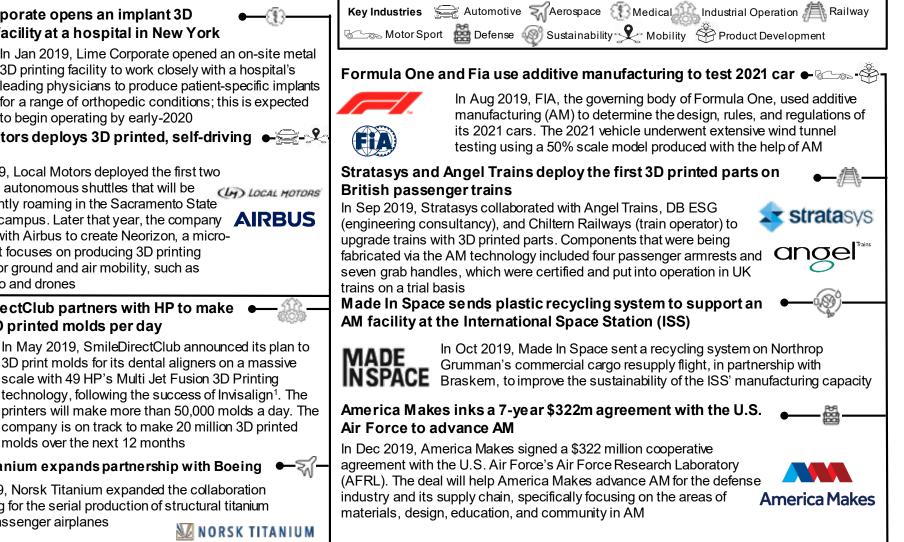
In Jan 2019, Lime Corporate opened an on-site metal 3D printing facility to work closely with a hospital's 🗶 Lima Corporate leading physicians to produce patient-specific implants for a range of orthopedic conditions; this is expected to begin operating by early-2020

Local Motors deploys 3D printed, self-driving • 😪 - 옷 shuttle

In Feb 2019, Local Motors deployed the first two

3D printed, autonomous shuttles that will be independently roaming in the Sacramento State University campus. Later that year, the company AIRBUS partnered with Airbus to create Neorizon, a microfactory that focuses on producing 3D printing solutions for ground and air mobility, such as urban cargo and drones

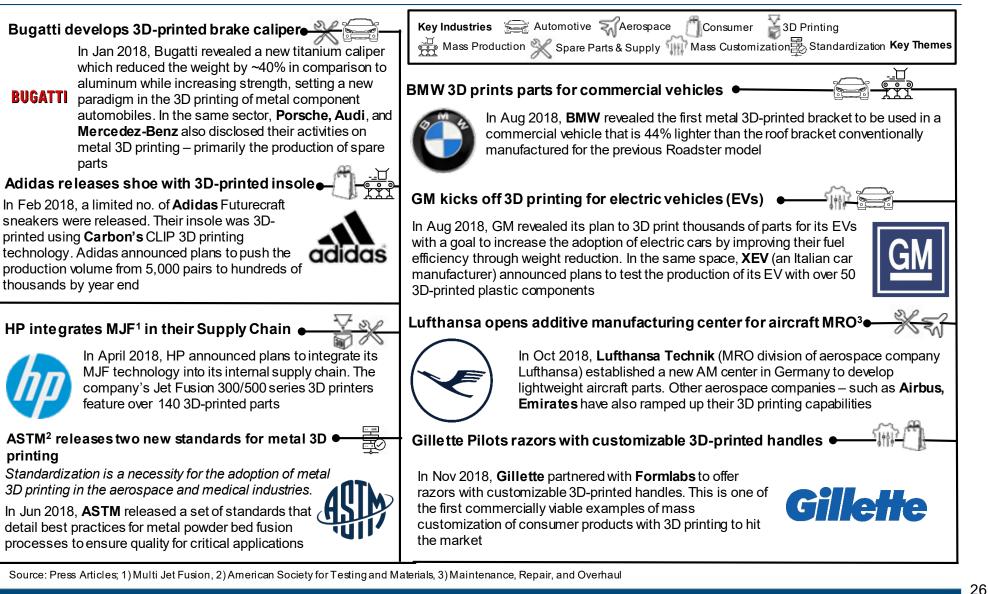
Smile DirectClub partners with HP to make 50,000 3D printed molds per day



3D print molds for its dental aligners on a massive scale with 49 HP's Multi Jet Fusion 3D Printing technology, following the success of Invisalign¹. The printers will make more than 50,000 molds a day. The company is on track to make 20 million 3D printed molds over the next 12 months

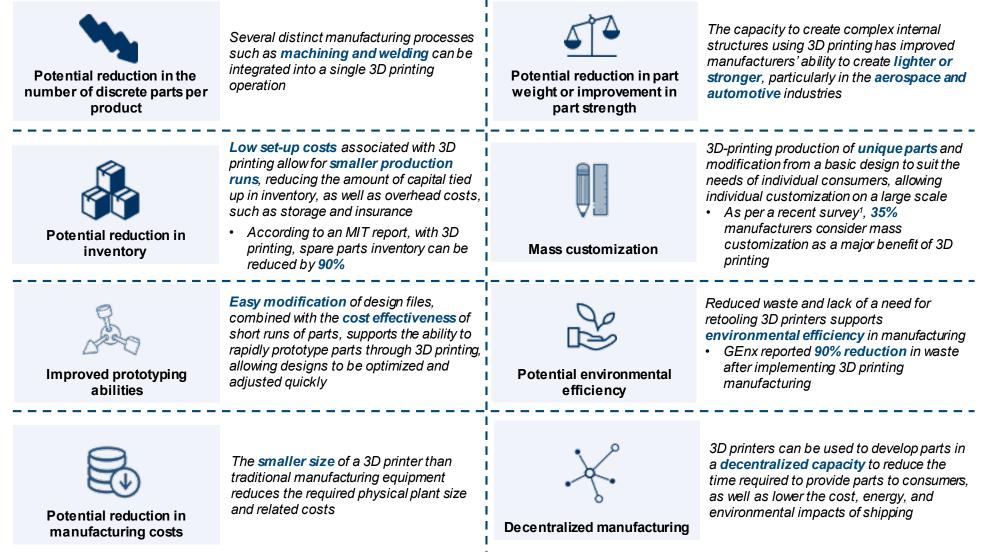
Norsk Titanium expands partnership with Boeing

In Jun 2019, Norsk Titanium expanded the collaboration with Boeing for the serial production of structural titanium parts for passenger airplanes


Source: Press Articles; 1) 3D printing clear teeth aligners production facilities

Recent Developments - "Out-of-Segment" Players Moving-in

3D printing is being increasingly adopted by leading companies across industries


Recent Developments (2018) – By Industry Types

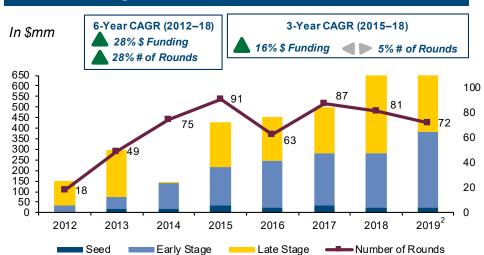
3D Printing's Impact on Manufacturing Processes

3D printing offers major benefits at various stages of the manufacturing process

Associated Manufacturing Impacts

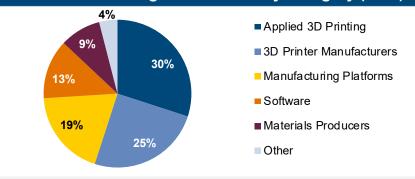
Source: US Congressional Research Service Report and Press Articles; 1) 2019 State of 3D Printing survey by Sculpteo

STIFEL


3D Printing Investment Landscape

VC/PE funding in 3D printing was expected to cross the \$1.1bn mark in 2019

Overview on the Global Financial Sponsor Landscape

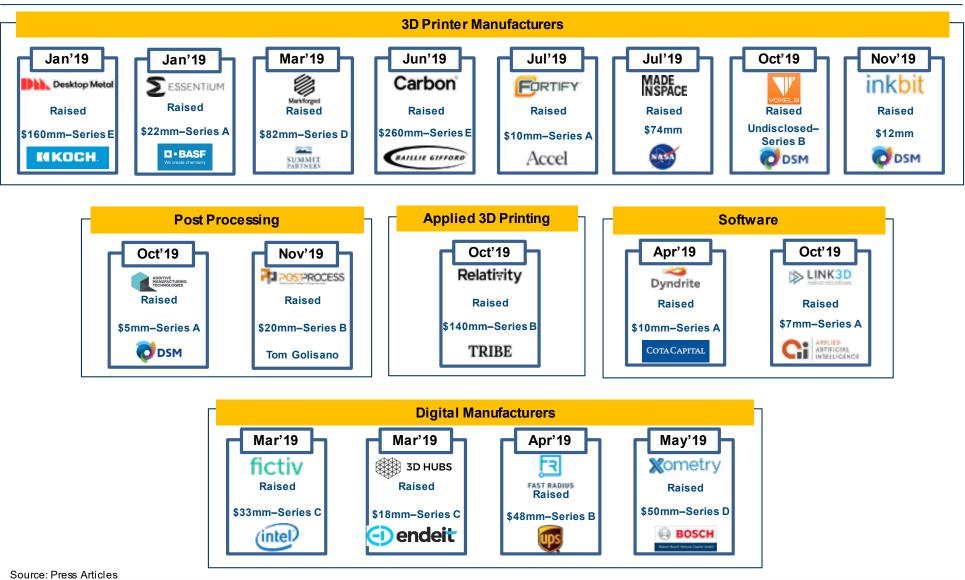

- Inclusions: All companies that develop and manufacture machinery for addictive manufacturing, such as 3D printers with various base technologies, 3D printing materials, 3D fabricators, and 3D printing pens; also includes software providers that offer slicing, model fixing, print management, and other functions. In addition, companies that provide 3D printed objects to consumers (jew elry, toys, collectables, etc.), healthcare products, etc. are also covered
- · Exclusions: Resellers of 3D printers and materials, and 3D printing service providers

Global Funding Rounds¹

Median and Average Deal Size and Trend (In \$mm)

Number of 3D Printing Investments By Category (2019)

VC investments in 3D printing are primarily centralized in the US, with companies such as Carbon (\$2.4bn), Desktop Metal (\$1.5bn), and Formlabs (\$1.0bn) – all 3D printing system US-based manufacturers – acquiring the **"unicorn"** status



Source: Tracxn; 1) Excludes Grant, Debt, and Post IPO Rounds; and information of Chinese companies, 2) As of Nov'19

3D Printing Private Funding Landscape

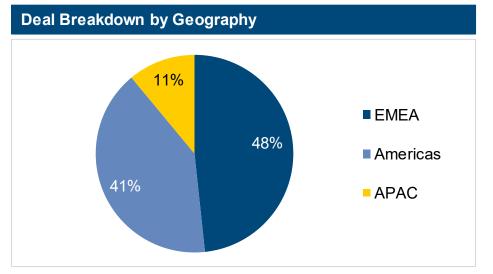
VC investments eclipsed in 2019 signaling an increase in viable applications

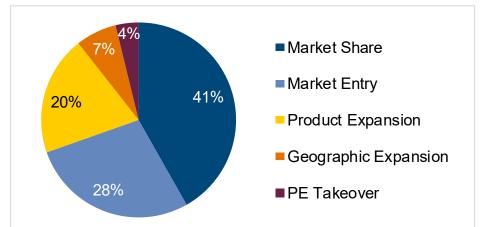
Selected Private Financing Transactions (2019)

3D Printing M&A Transaction Landscape

Strategic and financial buyers continue to pursue M&A activities in the 3DP space

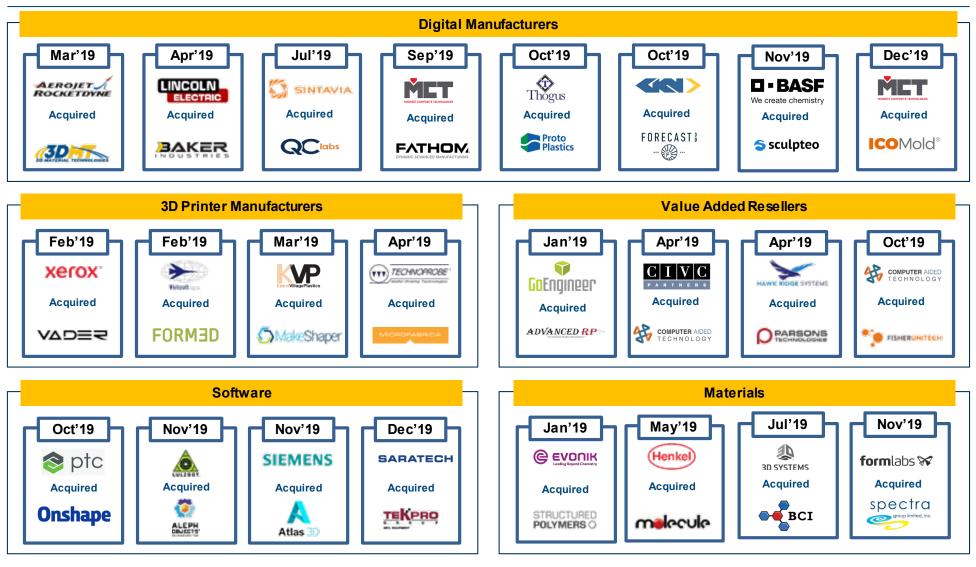
Global M&A Activity Overview (2015–2019)¹


Number of M&A Deals


Deal Breakdown by Buyer Type²

Strategic players from other sectors form a significant pool of buyers as they are looking to change their production processes and extend offerings either through AM technology or by entering a new high-growth market

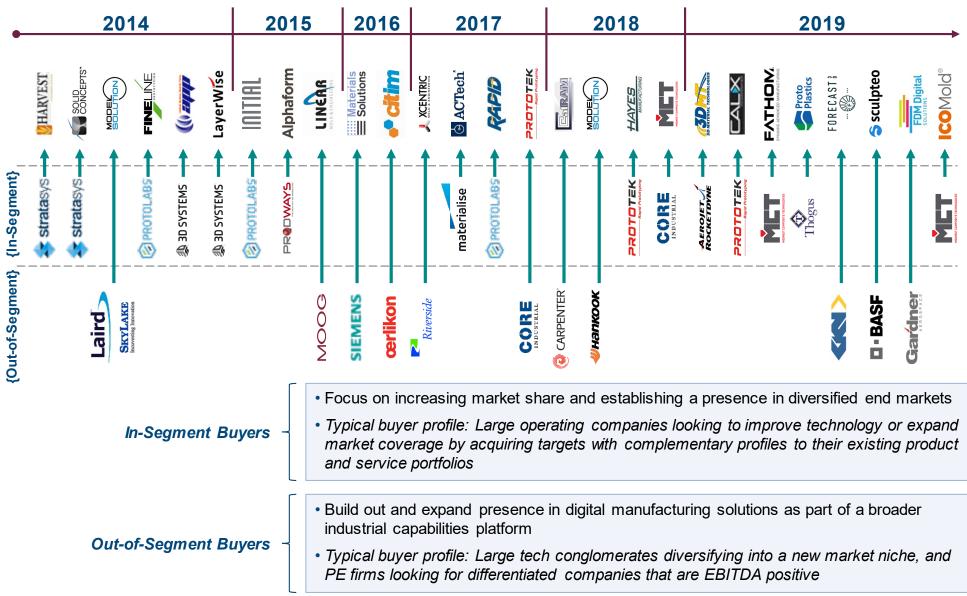
Deal Breakdown by Transaction Rationale



Source: EY Report; 1) As of June 2019, 2) Some deals include multiple buyers

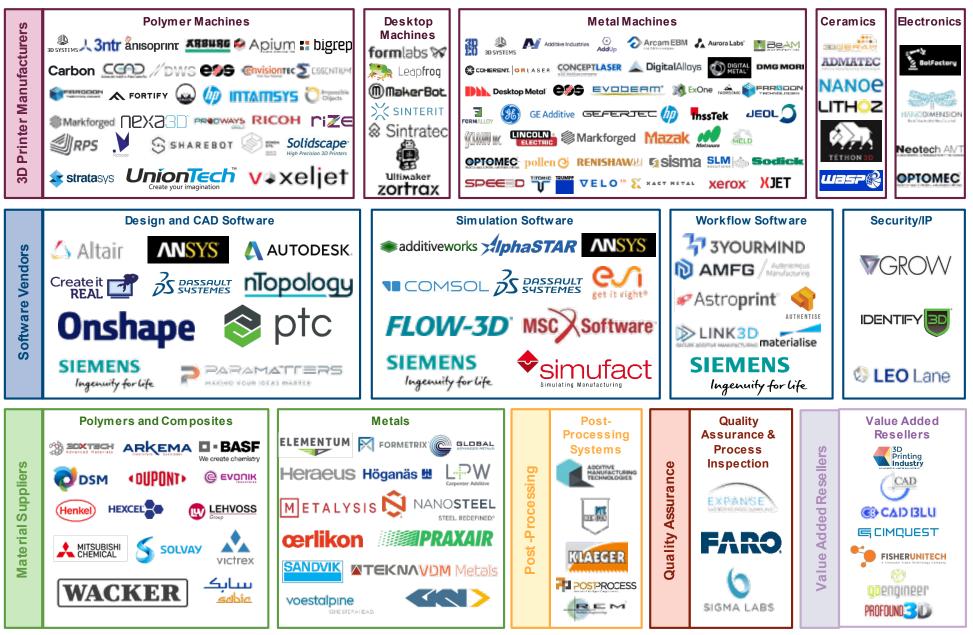
3D Printing M&A Landscape

Product innovation and intensifying competition boosting M&A activities


Selected M&A Transactions (2019)

Source: Press Articles

Emerging Buyer Universe of Digital Manufacturing Companies


Selected M&A Transactions

Sources: Capital IQ, 451 Research, publicly available information. Reflects announced date.

Market Map – 3D Printing

Source: AMFG Research and Press Article

STIFEL

Market Map – 3D Printing Digital Manufacturers

Source: Wohlers Associates and Press Articles

3D Printing Public Companies – Market Data

Source: Capital IQ as of 3/12/20; NM indicates "No Metric"; NA indicates "Not Available"

STIFEL

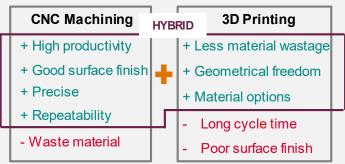
3D Printing Public Companies – Operating Data

Source: Capital IQ as of 3/12/20; NM indicates "No Metric"; NA indicates "Not Available"

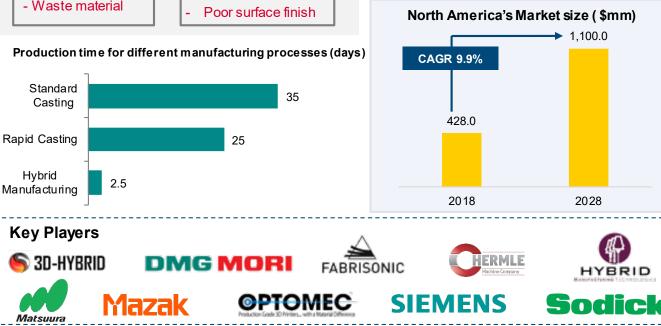
STIFEL

Digital Manufacturing – Disruption in Traditional Manufacturing

Hybrid Manufacturing


Hybrid manufacturing is the combination of additive and subtractive manufacturing

Introduction to Hybrid Manufacturing


Hybrid manufacturing is essentially a combination of laser cladding (additive/3D printing) and CNC machining/milling (subtractive) in a single machine environment

CNC + 3D = Hybrid Manufacturing

- Hybrid machines use DED¹ AM technology, in which a nozzle feeds powder is spread over a printing surface and then melted by beam/laser, which solidifies the metal afterwards
- Initially, the 3D printed portion's surface is rough, so after it's deposited, the subtractive CNC tools are used to smooth it

Using CNC machining on 3D-printed parts delivers the best of both technologies, making them complementary rather than competing

By 2025

40% revenue generation from other markets

\$260mm value of shipped machines

\$475mm hybrid material revenue

75% revenue is generated in the aerospace industry

Advantages:

- Used across multiple industries
- Reduced production time for complex parts
- High accuracy and precision
- Lower costs and decreased material wastage

Source: Press Articles; 1) Direct Energy Deposition

Injection Molding

3D printing and injection molding are complementary ways of manufacturing

3D Printing vs. Injection Molding

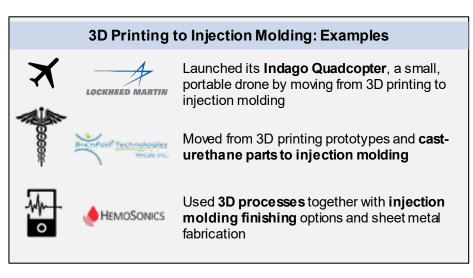
Although 3D printing manufacturing is emerging as a preferred manufacturing technology, it cannot completely replace traditional manufacturing through injection molding and other mass manufacturing processes

Drawbacks –

Denento-	В	e	n	e	fi	ts	_
----------	---	---	---	---	----	----	---

Injection Molding	3D Printing	Injection Molding	3D Printing
 Faster time to part Accurate and repeatable Low raw material cost Wide variety of materials Uninterrupted production process Readily available, low-cost hardware 	 Nearly unlimited geometric freedom Part cost not dictated by complexity Access to CAD design files Zero tooling investment Zero iteration cost 	 Time-consuming tooling build process Up-front tooling costs Production limited to tooling location Requires warehousing and capital outlay Tooling requires storage Costlydesign iteration Part complexity directly linked to tool cost 	 Slower process for each part made Capital expenditure for 3D printer Limited accuracy and surface finish Limited pallet of available material High material costs

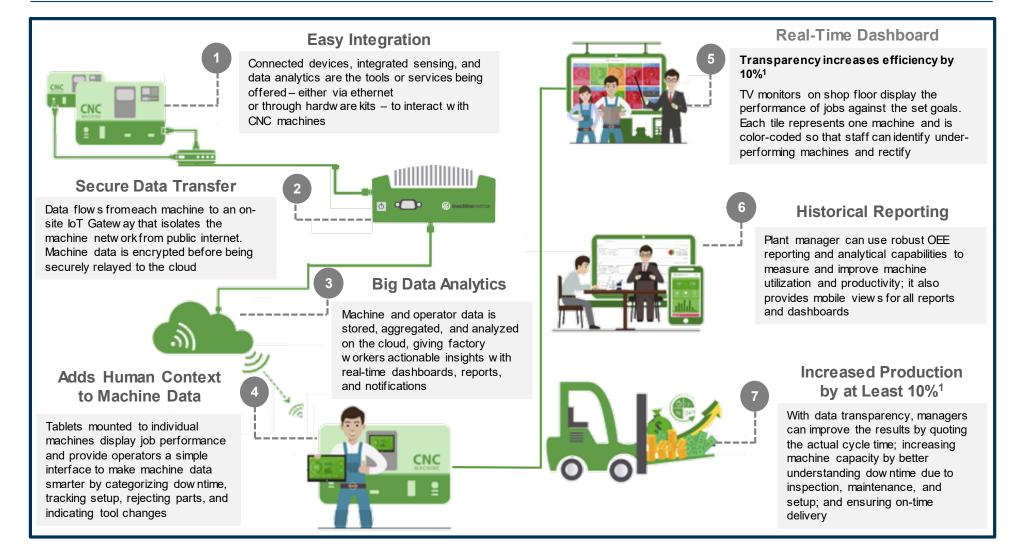
When the two processes are brought together as part of a well-managed workflow, their respective disadvantages are mitigated and strengths are enhanced; 3D printing and injection molding are complementary ways of manufacturing


3D printing can quickly deliver one-off prototypes with minimal cost, while injection molding delivers consistency, quality, and cost-effectiveness when large-scale production begins

The precision and repeatability of 3D printing makes it an effective and accurate process for functional prototyping while **injection molding is a cost- and time-efficient process** to produce parts for larger production runs of tens of thousands

These two processes work well together over a product's life cycle, starting with the design-risk mitigation of 3D printing prototyping and then shifting to the manufacturing method of injection molding to ramp up for high volumes

 For example, a business mayuse SLS for rapid prototyping and low-volume production, and then switch to injection molding once the volume of parts is above a certain threshold



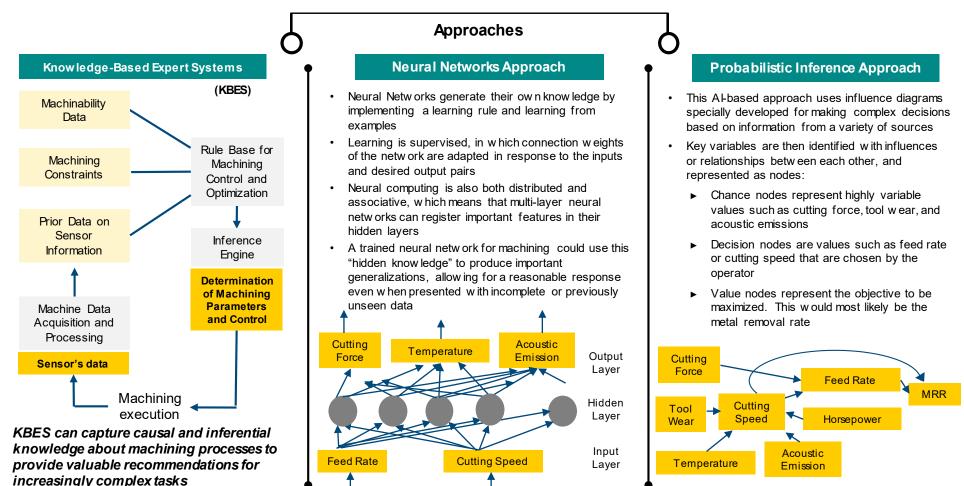
Source: Press Articles

CNC Machining and Industrial Internet-of-Things

Integrating IIoT with CNC helps manufacturers increase efficiency and transparency

How IIoT Improves CNC Operations

Source: Machine Metrics and Machine Design; 1) Asper Machine Metrics


STIFEL

CNC Machining and Artificial Intelligence

Al automatically adapts and optimizes machining parameters based on sensors

Integration of AI and CNC Machining

The optimal cutting parameters can lower machining errors such as tool breakage, tool deflection, and tool wear, resulting in higher productivity at lower cost. The researchers identified three main categories of **AI-**based methods for controlling CNC machining parameters:

Selected Market Map – Machining

Source: PitchBookData

Selected Market Map – Injection Molding

AVALIGN Technologies	accumold	Gustom Medical Silicone Design & Manufacturing		lugs" Caps'n Plug	Since 1974
	DAVIES MOLDING	D E D I E N N E MULTIPLASTURGY® G R O U P	O ecorub	EGFINDUSTRIES EVOL	LVE E SOLUTIONS
exo-s	FORUM PLA			Technologies	8
COMOR CUSTOM DIGITAL MANUFACTUR			LAND PLAST	MARK IC	
MOLDED - DEVICES - INC		PARXWA		N plasticcomponents.com	ASTICS BOUND
Plastipak	P LA STIC S	polymer corporat	ion PROTOLABS Manufacturing Accelerated		OTAL
Molded Plastics			Revere Plastics Systems, LLC. Springbo	ard тастот≡к ттес	hnimark
TechnoMoules	PLASTICS, INC.	Iniplast UP	vistaTek		netry

Source: PitchBookData

Important Notice

This presentation and the information contained herein is confidential and has been prepared exclusively for the benefit and internal use of the Stifel dient to whom it is directly addressed and delivered (including such dient's subsidiaries, the "Company"). In connection with the preparation and provision of these materials, Stifel has relied upon and assumed, without independent investigation or verification, the accuracy and completeness of all financial and other information that was made available, supplied, or otherwise communicated to Stifel by or on behalf of the Company and other publicly available information, and Stifel expressly disclaims any responsibility for, or liability in connection with, such information or the Company's use of these materials. Any analyses of any potential strategic alternatives or transactions that may be available to the Company reflected in these materials (and the other contents hereof) are preliminary and are subject to the assumptions and gualifications set forth herein, as well as further review and modification by Stifel. Any valuation ranges or other estimates are solely illustrative and do not purport to be valuation advice in respect of the Company or any other entity (including any potential counterparty to any strategic alternative or transaction) and should not be relied upon as such. Any such advice would only be provided pursuant to an engagement letter or other definitive written agreement entered into between the Company and Stifel. These materials are necessarily based upon economic, market, financial and other conditions as they exist on, and on the information made available to us as of, the date of these materials, and subsequent developments may affect the analyses (if any), information or other contents in these materials. These materials do not contain advice in any respect as to the legal, regulatory, tax or accounting consequences of any potential strategic alternatives or transactions on the Company or the Company's shareholders, and it is the responsibility of such parties to obtain advice on such matters from other qualified professionals. It is understood that these materials are solely for the information of, and directed to, the Company and its Board of Directors in their evaluation of potential strategic alternatives or a transaction and are not to be viewed as definitive or to be relied upon by any shareholder of the Company or any other person or entity. These materials are not intended to, and do not, constitute a valuation of the Company or any other party (including, without limitation, the price or consideration that may be offered or paid in any potential transaction, or in any of the other terms thereof), a fairness opinion, or a recommendation to the Company as to how the Company, its Board of Directors or shareholders should vote or act with respect to any potential strategic alternatives or transactions, and are provided for informational purposes only. Any identification of, or discussion regarding, any third parties in these materials does not purport to indicate the interest or receptiveness of any such party to a strategic alternative or transaction with the Company. Any such indication of interest, and the potential terms of any such transaction, can only be ascertained through substantive negotiations with such third parties. Stifel cannot and will not guarantee the successful consummation of any potential strategic alternative or transaction referenced herein. In addition, the Company should be aware that in the ordinary course of Stifel's business, it may have had confidential discussions with financial investors or with parties in the Company's industry group (induding competitors) regarding strategic alternatives, induding potential transactions. Such discussions may have focused on specific companies and/or presented illustrative data concerning possible transactions involving such companies, which may include the Company. These materials are confidential and are not to be published, quoted or referred to, in whole or in part, in any registration statement, prospectus or proxy statement, or in any other document used in connection with the offering or sale of securities or to seek approval for any potential strategic alternatives or transactions, nor shall these materials be used for any other purposes, without Stifel's express written consent. All transaction announcements included herein appear as a matter of record only. Dollar volume for securities offerings represents full credit to underwriter. Stifel is a fullservice securities firm which may be engaged at various times, either directly or through its affiliates, in various activities including, without limitation, securities trading, investment management, financing and brokerage activities and financial advisory services for companies, governments and individuals. In the ordinary course of these activities, which may conflict with the interests of the Company, Stifel and its affiliates from time-to-time may (i) effect transactions for its own account or the accounts of its customers and hold long or short positions in debt or equity securities or other financial instruments (or related derivative instruments) of the Company or other parties which may be the subject of any engagement or transaction involving the Company; (ii) hold discussions with and provide information to dients, potential dients and other entities regarding various market and strategic matters (including potential strategic alternatives), which entities may include potential counterparties to a transaction or strategic alternative involving the Company, and which matters may have included a possible transaction with the Company: and/or (iii) perform various investment banking, financial advisory and other services for other dients and customers who may have conflicting interests with respect to the Company.

Independence of Research

Stifel prohibits its employees from directly or indirectly offering a favorable research rating or specific price target, or offering to change a rating or price target, as consideration or inducement for the receipt of business or for compensation.

Basis of Presentation

References herein to "Stifel" collectively refer to Stifel, Nicolaus & Company, Incorporated and other affiliated broker-dealer subsidiaries of Stifel Financial Corp. (NYSE: SF), the parent holding company of Stifel and such other affiliated broker-dealer subsidiaries. Unless otherwise indicated, information presented herein with respect to the experience of Stifel also includes transactions effected and matters conducted by companies acquired by Stifel (including pending acquisitions publicly announced by Stifel), or by Stifel personnel while at prior employers.

